AC/27.06.2023/RS1



NAAC REACCREDITED - 'A' GRADE

**SIES College of Arts, Science and Commerce (Autonomous)** 

**Affiliated to University of Mumbai** 

Syllabus under NEP effective from June 2023

Programme: B.Sc.

**Subject: Mathematics** 

**Core Course** 

Class: FYBSc Semester: I and II

**Choice Based Credit System (CBCS)** 

# Semester I Core Course

This Core course is offered to students of BSc in semester I, who have chosen Mathematics as Major/ Minor subject

| Name o | Name of Program: Bachelor of Science Name of Department: Mathematics |             |                                           |                                 |         |       |
|--------|----------------------------------------------------------------------|-------------|-------------------------------------------|---------------------------------|---------|-------|
| Class  | Semester                                                             | Course Code | Course Name                               | No. of<br>lectures/ per<br>week | Credits | Marks |
| FYBSc  | I                                                                    | SIUMTCC111  | Differential<br>Calculus of 1<br>variable | 3                               | 3       | 75    |
| FYBSc  | I                                                                    | SIUMTCCP111 | Mathematics<br>Practical 1                | 2 per batch                     | 1       | 25    |

Course Name: Differential Calculus of one variable.

Credits: 3 Type: Theory Course

## **Expected Course Outcomes**

On completion of this course, students will be able to

- 1. State definitions, propositions and prove important results based on Supremum, Infimum, bounded sets, properties and inequalities of real numbers, limit, continuity, differentiability.
- 2. Apply various properties, results and inequalities to solve problems on intervals, neighbourhoods, boundedness, derivatives of functions, plotting graphs of functions, apply derivatives to solve problems on Maxima-Minima, increasing and decreasing functions.
- 3. Determine continuity of a function at a point or on intervals and distinguish between the types of discontinuities at a point, Identify bounded and unbounded sets, analyse if a result is applicable to solve a problem. derivatives and related terms, Plot graphs of standard functions and comment on continuity

| Pre-requisites: | Derivatives, functions of one variable, graphs of functions. |             |
|-----------------|--------------------------------------------------------------|-------------|
| Unit I          | Real Numbers and functions of 1 variable                     | 15 Lectures |

|         | • The set of real numbers, Order property of real numbers, properties of                                                  |                                 |  |  |
|---------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------|--|--|
|         | Absolute Value function                                                                                                   | Absolute Value function         |  |  |
|         | • Intervals and neighbourhoods in R, Hausdorff property                                                                   |                                 |  |  |
|         | Bounded sets in the set of Real numbers, Supremum and infi                                                                | imum, Basic                     |  |  |
|         | results: Continuum property (l.u.b. Axiom-statement) and consequence                                                      |                                 |  |  |
|         | <ul><li>Archimedean property and its applications.</li><li>Real valued Functions of one variable: Domain, Range</li></ul> |                                 |  |  |
|         |                                                                                                                           |                                 |  |  |
|         | Graph of a function. Examples: Constant function, Identity 1                                                              | function,                       |  |  |
|         | Absolute value, Step function, Floor and Ceiling functions,                                                               |                                 |  |  |
|         | Trigonometric functions, Linear and Quadratic functions and                                                               | their                           |  |  |
|         | graphs. Graphs of functions such as $x^3, \frac{1}{x}, \frac{1}{x^2}$ , $\log(x)$ , $a^x$ and $a^x$                       |                                 |  |  |
|         | done in practical 0.)                                                                                                     |                                 |  |  |
|         | • $\varepsilon$ - $\delta$ definition of limit of a function, Evaluation of limit of simple                               |                                 |  |  |
|         | functions using the definition, Uniqueness of limit if it exists, Algebra of                                              |                                 |  |  |
|         | limits, Limit of composite function                                                                                       |                                 |  |  |
|         | Sandwich theorem, Left hand, Right hand limits, Non-existence of limit                                                    |                                 |  |  |
|         | Infinite limits and Limits at infinity.                                                                                   |                                 |  |  |
|         | <ul> <li>Continuity of a real valued function at a point in terms of Lir</li> </ul>                                       | nits                            |  |  |
|         | Continuity of a real valued function on a set in terms of Limi                                                            | its,                            |  |  |
|         | examples, Continuity of a real valued function at end points                                                              | of domain                       |  |  |
|         | <ul> <li>Algebra of continuous functions</li> </ul>                                                                       | Algebra of continuous functions |  |  |
|         | Discontinuous functions, examples of removable and essential                                                              |                                 |  |  |
|         | discontinuity                                                                                                             |                                 |  |  |
| Unit II | Differentiability of functions of one variable and Mean                                                                   | 15 Lectures                     |  |  |
|         | ValueTheorems                                                                                                             |                                 |  |  |
|         |                                                                                                                           |                                 |  |  |

|          | <ul> <li>Properties of continuous functions on a closed and bounded</li> <li>Definition of Derivative of a real valued function of one varionint.</li> <li>Differentiable functions are continuous but not conversely</li> <li>Algebra of differentiable functions, Chain Rule for derivative composite function (statement only)</li> <li>Derivative of inverse functions, Implicit differentiation (only)</li> <li>Higher order derivatives of some standard functions</li> <li>Leibnitz rule</li> <li>Geometric interpretation of derivative</li> </ul> | riable at a |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Unit III | Differentiability and Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15 Lectures |
|          | <ul> <li>The Mean Value Theorems         Rolle's theorem, examples and applications         Lagrange's mean value theorem, examples and applications         Cauchy's mean value theorems, examples and applications         Indeterminate forms: L'Hospital's Rule (without proof) as an application of CMVT. Examples.(Problems in Practicals)     </li> <li>Taylor's theorem (without proof). Taylor's polynomial and application.         <ul> <li>Applications of first and second derivatives:</li></ul></li></ul>                                   |             |

## Course Name: Mathematics Practical 1 Credits: 1

#### **Expected Course Outcomes**

On completion of this course, students will be able to

- 1. Apply various definitions, results and methods learnt in two theory courses to solve problems.
- 2. Test validity of mathematical statements using results and constructing appropriate examples

| Practical<br>No. | Title                                                                                                                                                                                       |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 01               | Graphs of real valued functions of one variable, use of a mathematical software to plot graphs. Identifying left, right limits of functions at a point. Discussing continuity using graphs. |
| 02               | Properties of real numbers, absolute value, Archimedian property, bounded sets                                                                                                              |
| 03               | Limit and Continuity of a function. Discontinuous functions                                                                                                                                 |
| 04               | Finding derivatives by definition, Use of Leibnitz rule                                                                                                                                     |
| 05               | Problems based on MVTs, L' Hospital's rule                                                                                                                                                  |
| 06               | Problems based on applications, Maxima-Minima, increasing decreasing functions, concavity and points of inflection                                                                          |
| 07               | Problems based on Taylor's theorem, finding Taylor's linear and quadratic polynomial approximation                                                                                          |

#### References

- 1. Ajitkumar, S. Kumaresan, A Basic Course in Real Analysis, CRC press, 2014
- 2. R. G. Bartle- D. R. Sherbert, Introduction to Real Analysis, John Wiley & Sons, 1994.
- 3. James Stewart, Calculus, Third Edition, Brooks/cole Publishing Company, 1994
- 4. R. R. Goldberg, Methods of Real Analysis, Oxford and IBH, 1964..
- 5. T. M. Apostol, Calculus Vol I, Wiley & Sons (Asia) Pte. Ltd.
- 6. G. B. Thomas, R.L. Finney, Calculus and analytic geometry, 3<sup>rd</sup> Edition onwards.
- 7. Ghorpade, Limaye, A Course in Calculus and Real Analysis, Springer International Ltd, 2000

#### **Online Resources**

- 1. <a href="https://openstax.org/details/books/calculus-volume-1">https://openstax.org/details/books/calculus-volume-1</a>
- 2. https://archive.org/details/Calculus10thEditionH.Anton

# **Scheme of Evaluation:**

| I) Continuous Internal Evaluation (25 Marks)      |          |  |  |  |
|---------------------------------------------------|----------|--|--|--|
| Class Test                                        | 10 Marks |  |  |  |
| Assignment/ Project and Viva/ Presentation        | 15 Marks |  |  |  |
| II) Theory Examination (50 Marks)                 |          |  |  |  |
| Semester End Examination based on entire syllabus | 50 Marks |  |  |  |
| III) Practical Examination (25 Marks)             |          |  |  |  |
| Certified Journal                                 | 5 marks  |  |  |  |
| Practical exam                                    | 20 marks |  |  |  |

## **Semester II**

#### **Core Course**

This course is offered to students of BSc in semester II, who have chosen Mathematics as Major/ Minor subject

| Name of Program: Bachelor of Science Name of Department: Mathematics |          |             |                              |                                 |         |       |
|----------------------------------------------------------------------|----------|-------------|------------------------------|---------------------------------|---------|-------|
| Class                                                                | Semester | Course Code | Course Name                  | No. of<br>lectures/ per<br>week | Credits | Marks |
| FYBSc                                                                | II       | SIUMTCC121  | Algebra and its applications | 3                               | 3       | 75    |
| FYBSc                                                                | II       | SIUMTCCP121 | Mathematics Practical 2      | 2 per batch                     | 1       | 25    |

Course Name: Algebra and its applications

Credits: 3 Type: Theory course

#### **Expected Course Outcomes**

On completion of this course, students will be able to

- 1. State definitions of divisibility of integers, GCD, prime, congruence, function and its different types, binary operation, relation and its different types, State the well ordering property, induction theorems, fundamental theorem of Arithmetic, State and prove results based on divisibility, primes, congruences, bijectivity of functions, binary operations, partitions and equivalence relations, primitive roots
- 2. Apply various results to find GCD, prove propositions based on induction theorems, solve problems based on congruences, check bijectivity of functions, encryption and decryption
- 3. Identify invertible functions, binary operations, partitions and equivalence relations

| Pre-requisites: | Basic Set Theory and Logic                                                                                                                            |             |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Unit I          | Integers and divisibility                                                                                                                             | 15 Lectures |
|                 | Statements of well-ordering property of non-negative integers, Princo of finite induction (first and second) as a consequence of Well-Orde Principle. |             |

|          | <ul> <li>Divisibility in integers, division algorithm, greatest common divisor (g.c.d.) and least common multiple (l.c.m.) of two non-zero integers, basic properties of g.c.d. such as existence and uniqueness and that the g.c.d. of a, b∈Z can be expressed as ma + nb, m, n∈Z, Euclidean algorithm.</li> <li>Euler's phi function and its properties</li> <li>Primes, Euclid's lemma, Fundamental Theorem of arithmetic, The set of primes is infinite, there are arbitrarily large gaps between primes.</li> <li>Congruence, definition and elementary properties, Results about linear congruence equations. Examples.</li> </ul>                                                                                                                                                                                                     |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit II  | Functions and Equivalence relations 15 Lectures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | <ul> <li>Definition of a function, domain, co-domain and range of a function, composite functions, examples, Direct image f(A) and inverse image f<sup>-1</sup>(B) for a function f; Injective, surjective, bijective functions; Composite of injective, surjective, bijective functions when defined; invertible functions, bijective functions are invertible and conversely; examples of functions including constant, identity, projection, inclusion;</li> <li>Binary operation as a function, properties, examples.</li> <li>Equivalence relation, Equivalence classes, properties such as two equivalence classes are either identical or disjoint, Definition of partition, every partition gives an equivalence relation and vice versa. Congruence is an equivalence relation on Z, Residue classes and partition of Z.</li> </ul> |
| Unit III | Cryptography 15 Lectures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | <ul> <li>Order of an integer and Primitive Roots.</li> <li>Basic notions such as encryption (enciphering) and decryption (deciphering), Cryptosystems, symmetric key cryptography, Simple examples such as Shift cipher, Affine cipher, Hill's cipher, Vigénere cipher.</li> <li>Concept of Public Key Cryptosystem; ElGamal cryptosystem,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

RSA Algorithm. An application of Primitive Roots to Cryptography.

Course Name: Mathematics Practical 2 Credits: 1

## **Expected Course Outcomes**

On completion of this course, students will be able to

- 1. Apply various definitions, results and methods learnt in the theory course to solve problems.
- 2. Test validity of mathematical statements using results and constructing suitable examples

| Practical No. | Title                                                                                                                           |
|---------------|---------------------------------------------------------------------------------------------------------------------------------|
| 01            | Set theory and logic                                                                                                            |
| 02            | Division Algorithm and Euclidean algorithm, Primes                                                                              |
| 03            | Fundamental Theorem of Arithmetic, Euler's Phi function, Congruences                                                            |
| 04            | Functions (direct image and inverse image), Injective, surjective, bijective functions, finding inverses of bijective functions |
| 05            | Equivalence relations and Partitions                                                                                            |
| 06            | Cryptosystems (Public Key) and primitive roots                                                                                  |
| 07            | Cryptosystems (Private Key)                                                                                                     |

## References

- 1. J. P. Tremblay & R. Manohar. (1974). *Discrete Mathematical Structures with Applications to Computer Science*, McGraw Hill
- 2. David M. Burton. (2015). *Elementary Number Theory*, McGraw Hill Education (India) Private Ltd.
- 3. Norman L. Biggs. (1989). Discrete Mathematics, Clarendon Press, Oxford
- 4. I. Niven and S. Zuckerman. (1972). Introduction to the theory of numbers, Wiley Eastern

- 5. Kenneth Rosen. (1999). *Discrete Mathematics and its applications*, Mc-Graw Hill International Edition, Mathematics Series.
- 6. Larry J. Gerstein. (2012). *Introduction to Mathematical Structures and Proofs*, Springer-Verlag, New York

# **Scheme of Evaluation:**

| I) Continuous Internal Evaluation (25 Marks)      |          |  |  |  |
|---------------------------------------------------|----------|--|--|--|
| Class Test                                        | 10 Marks |  |  |  |
| Assignment/ Project and Viva/ Presentation        | 15 Marks |  |  |  |
| II) Theory Examination (50 Marks)                 |          |  |  |  |
| Semester End Examination based on entire syllabus | 50 Marks |  |  |  |
| III) Practical Examination (25 Marks)             |          |  |  |  |
| Certified Journal                                 | 5 marks  |  |  |  |
| Practical exam                                    | 20 marks |  |  |  |

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*